Top Drone Mistakes (Part 2): Not Following Drone Best Practices


From autonomous drones to air taxis, the urban air mobility market has advanced rapidly. Drones open the door to amazing new opportunities and allow anyone to access to the skies. With access like this comes responsibility.  Anyone operating a drone must make sure that their flights are conducted in a way that is both safe and legal. 

To avoid scenarios of pilots giving the industry a bad rap, we kicked off a new series on the top drone mistakes in 2021 and beyond. In Part 1, we covered the top misconceptions around the new FAA drone rules for flying over people, vehicles, and at night. This time we’ll focus on the top mistakes when it comes to not following drone best practices.   

 No matter if you’re a new drone hobbyist or an experienced commercial pilot, this list is a good reminder of what NOT to do when operating drones. 


Mistake 1: Keeping your battery connected to the charger  

Do not leave your battery connected to a charger once it’s fully charged. This could accelerate the aging of the battery or even spark a fire. If a battery is going to be left idle for several days, many manufacturers recommend discharging it between 40% – 70% of its total power before storing it. It’s always best to store batteries in a cool, dry place (i.e., room temperature) that’s away from any heat sources, such as direct sunlight, and clear of any flammable materials, such as carpet. Then charge the battery to 100% when you’re ready to fly. 


Mistake 2: Flying with less than 20% battery power in reserve 

It’s important to plan flights where your drone can comfortably return home with at least 20% battery power left in reserve. If you regularly push the limits of your battery’s charge, you’ll likely shorten the lifespan and reliability of your battery. Saving this extra battery power can also help manage any unforeseen circumstances, such as counteracting high winds or hovering until your landing zone is clear. Although it sounds complex, drone pilots can easily evaluate airspace classes, no fly zones, location insights, and advanced weather intelligence to see where it’s safe to fly using our free SkyGrid Flight Control app. 


Mistake 3: Flying without updating your firmware 

Just like the apps on our phones, a drone’s firmware requires regular upgrades from its developers to add new features, address bugs, or improve security measures. That’s why it’s critical to always ensure your firmware is up to date before taking flight. If you’re planning a complex flight or a commercial operation, it’s best practice to update the firmware the day before. This will allow you to download the update with a good Internet connection and ensure everything is working properly.  


Mistake 4: Flying near power lines 

Flying too close to power lines may affect your drone’s signal. But more importantly, you also risk sparking a power outage or fire if your drone touches the power lines. This is especially dangerous in dry climates, such as in California, where wildfires are common. You can check the wildfire risk in your area through apps like SkyGrid Flight Control that show the local fire index. But the bottom line is, always steer clear of power lines, especially when the fire index is high.  


Mistake 5: Flying without reading your local drone laws 

Although the FAA regulates the national U.S. airspace, state and local municipalities often have additional drone rules and regulations, so make sure you’re aware of them. Local laws might include restrictions around flying near historic sites or residential properties. The Pilot Institute recently created a handy wiki resource to help drone pilots stay on top of regulatory changes in each state. 

Stay tuned for Part 3 where we’ll focus on Flying in Adverse Conditions. In the meantime, check out our new drone app to check the risk in your area and advanced weather intelligence. 


Download SkyGrid Flight Control for free in the iPad App Store or learn more about our advanced enterprise features.


How SkyGrid Flight Control Addresses Your Challenges with Our Unique Solution

SkyGrid HyperWerx Facility
Navigating the airspace is complex, and often risky.

Drone operators must account for a wide range of factors that can change on a whim. Heavy rain or high winds could pick up. A new flight restriction could be issued. Or an emergency helicopter could suddenly conflict with the route. It is simply not feasible for humans alone to monitor and track all these factors. But SkyGrid can help.  

Free drone app

Our Airspace Awareness application enables drone operators to understand the airspace, predict environmental changes, and avoid hazardous conditions. With a 3D airspace map and multiple data layers, including airspace traffic, flight restrictions, hyper-local weather, obstacle data, roadway traffic, and more, the application shows a comprehensive picture of the sky and the ground below. 

By powering our application with artificial intelligence and blockchain technology, we are eliminating the potential for human error when it comes to the safety and security of our airspace. For example, smart conditions within Airspace Awareness help enterprises ensure safe and compliant drone operations. Organizations can set company-wide conditions that apply to all flights in addition to custom parameters for specific missions, drones, or payloads.  

These conditions can be set based on a wide variety of factors, such as local regulations, weather, or vehicle health. Company-wide conditions could include regulatory standards, such as flying below 400 feet and avoiding areas near airports, while custom parameters for specific drones or payloads could include flying with at least 40 percent battery life or flying under 25 mph winds. 

SkyGrid blockchain technology, augmented with smart contracts that operate under performance guarantees, validates the conditions, and only authorizes flights that meet all parameters. This approach prevents pilots from selecting a mission or drone that does not meet the required safety conditions set by an organization. Once a route is approved, commercial fleet managers and pilots will receive real-time alerts if a condition is at risk of violation during flight. The blockchain maintains a minute-by-minute record of each drone’s status and its flight details, including altitude, location, etc.  

SkyGrid is also applying artificial intelligence to generate the safest routes and recommend new routes as the environment changes. For example, if a new flight restriction is issued or wind speeds suddenly increase, the AI models will generate a new route that is not at risk of violating a condition. 

What sets us apart?

SkyGrid is the first and only drone management system powered by AI and blockchain. These technologies are critical to avoid collisions in-flight, protect drones from malicious activity, and ensure data integrity. SkyGrid is backed by Boeing, the world’s largest aerospace company, we have more than 100 years of experience navigating the global airspace. We show the most complete operating picture of the sky and the ground below with global data feeds from industry-trusted sources. Our system eliminates the manual workflows, enabling drone operators to autonomously execute optimal flights and allowing authorities to automatically mandate the airspace rules. 

Download SkyGrid Flight Control for free in the iPad App Store or learn more about our advanced enterprise features.


Top Drone Mistakes (Part 1): Misinterpreting New FAA Drone Rules

FAA drone rules

Getting started as a new drone pilot can be intimidating. There are a lot of FAA drone rules and best practices to follow that often use confusing language and change on a regular basis. To clear up some of the confusion, we’re kicking off a new series to help pilots avoid the top drone mistakes in 2021 and beyond. No matter if you’re a new drone hobbyist or an experienced commercial pilot, this series will be a good reminder of what NOT to do when operating drones.

In Part 1, we’re focused on the misconceptions around the new FAA drone rules, including operations over people, vehicles, and at night.

Mistake 1: Flying directly over people with exposed propellers

You may have heard the news that the FAA will allow drones to fly over people without a waiver, but keep in mind this rule is limited to certain conditions. There are four different categories of aircraft eligibility, and in all cases, the drone must contain no exposed rotating parts that could lacerate human skin. Drones with propeller guards are eligible as long as they prevent the blades from causing lacerations.

The total drone weight must also be 0.55 pounds or less. If the drone weighs more than 0.55 pounds, additional conditions are required, such as a declaration of compliance, label requirements, and potential injury limitations. You can read the FAA’s full list of rules for flights over people here for more details. They’re expected to go into effect starting March 2021.

Mistake 2: Flying over moving vehicles for a sustained timeframe

The FAA also announced drones can now fly over moving vehicles under certain conditions. For starters, drones must meet the same requirements for flying over people. The drone must also remain within a closed/restricted access site where everyone is on notice that an unmanned aircraft may fly over their vehicle.

If you’re not within a closed/restricted access site, drones are not permitted to maintain sustained flight over moving vehicles. Sustained flight is defined as hovering, flying back and forth, or circling the area. That means drones can still briefly fly over moving vehicles if they’re in transit to another location. These new rules will be effective 60 days after the FAA’s official publication, so likely March 2021.

Mistake 3: Flying at night without anti-collision lights & proper training

Flying at night was also permitted by the new FAA drone rules, but drones must have a flashing anti-collision light that’s visible for at least 3 statute miles. It’s also required for drone operators to complete a Part 107 knowledge test or recurrent online training for those who already completed the initial test. The FAA is currently updating the testing and training materials to add new information about night operations.

Mistake 4: Flying commercially without proof of your Remote Pilot Certificate

A Remote Pilot Certificate (a.k.a. a drone license) is required to operate drones under the FAA’s Part 107 rules, which are primarily meant for operators flying for business, a commercial enterprise, nonprofit work, or for educational purposes. Keep in mind that any drone operation that results in direct compensation or used to advance any business can be considered commercial use and will require a drone license.

The new FAA drone rules require Part 107 pilots to have their certification in possession when operating drones. To obtain a certificate, drone operators must pass an initial in-person knowledge test. Pilots are no longer required to pass a recurrent knowledge test every 24 months, which previously cost $160. Instead, the FAA plans to offer a free online recurrent training, which will be required to fly at night. This training is expected to be available at in March 2021.

Mistake 5: Flying without registering your drone

All drone pilots are required to register their drone with the FAA, unless it weighs 0.55 pounds or less and is flown exclusively under the rules for recreational flyers. Registration costs $5 and is valid for 3 years. It can be done via the FAA DroneZone website. Once complete, pilots are required to label their drone with the registration number.

Stay tuned for Part 2 where we’ll focus on the top drone mistakes when flying near restricted areas. In the meantime, check out our new drone app to help simplify compliance when planning your flights.

Download SkyGrid Flight Control for free in the iPad App Store or learn more about our advanced enterprise features.

Remote ID for Drones: Your Guide to the FAA’s New Rule

remote ID drones

Today, more than 1.7 million drones and 203,000 remote pilots are registered with the FAA, and these numbers are growing every day. However, the lack of a drone identification system has been a long-standing barrier to the scalability of unmanned aircraft. That barrier will soon be broken down. The FAA recently unveiled their final remote ID rule that will require drones to broadcast their location in the United States.

We’ll break down the basics of remote ID and what the new rule means for drone operators.

What is remote ID?

Remote ID technology, also known as a digital license plate, helps identify unmanned aircraft operating in the airspace. The FAA aims to create a comprehensive remote ID system where every drone in-flight broadcasts a unique identifier. This would allow authorities to identify any drone in the airspace and connect it with a registered pilot, much like an automobile license plate identifies a vehicle and the vehicle’s owner.

Why is remote ID important for drones?

First, remote ID technology can help aviation authorities provide situational awareness to other aircraft and identify unauthorized drones that may pose a security threat. Remote identification can also help law enforcement hold drone operators accountable if they violate any nuisance or privacy laws.

Secondly, remote ID efforts will help lay the foundation for more complex drone operations, such as flying over people, vehicles, or at night. Without a waiver, these operations were previously prohibited under the FAA’s Part 107 regulations. Remote identification is the first step to enable these advanced operations without requiring a waiver. In fact, the FAA recently announced they would begin allowing flights over people, vehicles, and at night under certain conditions.

Finally, a comprehensive remote ID system can help increase public trust in drone operations by providing assurances that the drones operating nearby are legal and safe.

What is the FAA’s final remote ID rule?

Under the final rule, all drones required to register with the FAA must enable remote identification. This would apply to all drones in the United States unless the drone weighs 0.55 pounds or less and is flown exclusively under the rules for recreational flyers. Drone operators can also choose to fly in a FAA-Recognized Identification Area where drones without remote ID are allowed to fly.

Otherwise, the rule requires the following data to be broadcasted: the drone’s serial number or an anonymous session ID; the drone’s position, altitude, and velocity; the position and altitude of the control station; emergency status; and time mark.

What’s required for drone operators to comply with remote ID?

In short, drone operators will have one of three methods for complying:

  1. Standard Remote ID Unmanned Aircraft: Drone pilots can operate a standard remote ID drone that broadcasts the required data directly from the drone via radio frequency broadcast (likely Wi-Fi or Bluetooth technology). The remote ID data will be available to most personal wireless devices within range of the broadcast. However, the rule states that correlating the serial number or session ID with the registered drone will be limited to the FAA. This information can also be made available to authorized law enforcement and national security personnel upon request. This method is most likely to enable beyond visual line of sight operations, depending on the broadcast range of the drone.
  2. Unmanned Aircraft with a Remote ID Broadcast Module: Drone pilots can also operate a drone with a remote ID broadcast module (may be a separate device attached to the drone). This would enable the retrofit of existing drones that don’t have remote ID capabilities. However, this method would require all drones to operate within visual line of sight.
  3. FAA-Recognized Identification Areas (FRIA): Drone pilots can also choose to operate a drone without remote ID, but at specific FAA-Recognized Identification Areas. No FAA-Recognized Identification Areas have been announced yet, but regulators will start approving applications for new zones in 2022. Organizations eligible to apply for establishment of a FRIA include community-based organizations recognized by the FAA, primary and secondary educational institutions, trade schools, colleges, and universities.

FAA remote ID rules

(Source: FAA)

When does the remote ID rule go into effect?

The final rule will take effect 30 months after publication. That means by the end of Summer 2023, remote ID will be mandatory for all qualifying drones in the United States. At this time, drone manufacturers will be required to produce drones that are compliant with the rule, and drone pilots will be required to fly a compatible drone.

It’s also worth noting that under the standard remote ID method, drone operators will not be able to disable the remote ID technology. The drone is required to self-test pre-flight and will not take off if remote ID isn’t functioning.

You can read the FAA’s fine print for more remote ID details here.

Ultimately, SkyGrid is committed to providing the solutions drone pilots need to simplify their operations and comply with FAA regulations as they evolve. Stay tuned for more updates from SkyGrid in the coming months.

In the meantime, be sure to check out our free drone app: SkyGrid Flight Control. The all-in-one app makes it easy to explore airspace, get LAANC, automate flights, and detect objects in real-time.

Download SkyGrid Flight Control for free in the iPad App Store or learn more about our advanced enterprise features.

AI Meets Drones: Detecting Objects In-Flight with Computer Vision

drone computer vision

Over the last two to three years, artificial intelligence has been a game changer for the drone industry. AI can be used to autonomously execute safe flight plans, predict drone maintenance needs, and protect drones from cybersecurity attacks.

During flight, AI can also be used to detect and track objects of interest in real-time through computer vision. This powerful technology is opening the door to new drone use cases that were previously unimaginable. It can help improve emergency response, animal conservation, perimeter security, site inspections, and much more.

Our free SkyGrid Flight Control app is equipped with computer vision to detect people, vehicles, animals, and other key objects in real-time as drone operators autonomously surveil a defined area. Get the scoop below and read on for more details.


What is computer vision?

Computer vision is a field of artificial intelligence that trains computers to identify, interpret, and track objects in imagery and video. The technology is driven by pattern recognition. It’s trained by feeding computer models thousands to millions of images with labeled objects. This allows the algorithms to establish a profile (e.g., color, shape) for each object to then identify the objects in unlabeled images.

Thanks to advances in machine learning and neural networks, computer vision has made great leaps in recent years and can often surpass the human eye in detecting and labeling certain objects. One of the driving factors behind this growth is the amount of data we generate that can be used to train computer vision models more accurately.

How does SkyGrid’s computer vision work?

Our computer vision is powered by a well-known neural network called YOLO, short for You Only Look Once. The YOLO object detection model is especially popular for real-time on-device systems because it is both small and very fast, while still maintaining high levels of accuracy. The models have been trained to recognize 80 different categories of common objects, such as people, cars, trucks, animals, electronics, and other objects. As a result, the SkyGrid Flight Control app achieves near real-time object detection (about 10-20 frames per second on an iPad) through a drone’s live video stream. See example below.

drone computer vision

SkyGrid Flight Control also enables users to select a detected object and track it through a drone’s live video feed. The algorithm itself is very performant, running at 60+ frames per second on an iPad.

drone object detection

Why kind of use cases can drone computer vision enable?

Our computer vision capabilities can support a wide variety of recreational and commercial drone use cases. It can help identify a missing person during a search and rescue operation or detect potential threats near critical infrastructure, such as an oil pipeline or high-security building. It can be used to count cars in parking lots to predict retail earnings or used to monitor wildlife to detect potential poachers. It can even help monitor social distancing to prevent the spread of COVID-19.

For enterprise customers, SkyGrid can train models to detect and track custom objects based on the mission objectives. For example, models could be trained to detect hurricane debris to help identify the most damaged areas in need of assistance. They could be trained to detect defects in solar panels to help improve the power output from a solar farm. Or they could be trained to detect sharks at the surface of the water to prevent attacks at popular beaches.

How will your computer vision capabilities evolve?

We’re constantly improving our computer vision models to make our object detection and tracking features more performant, robust, and specialized. Today, drone operators will see greater detection accuracy with a head-on view, which often requires flying at a lower altitude. In the coming months, we’re working to optimize this capability to improve accuracy at higher altitudes and maximize the usability to users. Stay tuned for more updates!

Download SkyGrid Flight Control for free in the iPad App Store or learn more about our advanced enterprise features.


5 Steps to Improve Your Drone Pre-Flight Checklist

drone pre-flight checklist

Checking your drone before flight is a standard practice. Many drone operators have an established routine that often includes recharging the battery and controller, updating the firmware, recalibrating the compass, assessing the propellers, and confirming GPS connectivity.

But situation awareness is also critical for safe flight. In low altitude airspace, conditions can shift rapidly and unpredictably, so it’s important to minimize risks by evaluating local conditions in the air and on the ground.

We recommend adding the following steps to your drone pre-flight checklist to up-level your situational awareness and make safer flight decisions.

1. Understand microweather conditions

As many operators can attest, weather conditions such as wind, temperature, and precipitation can have a major impact on drone hardware and overall success of the flight. The challenge is traditional weather sources often take 20 minutes to update and provide high-level data over a wide 2,000- to 4,000-meter radius.

Microweather data on the other hand is far more localized with updates every 60 seconds and details within a 500-meter radius, including precipitation, temperature, wind, cloud cover, visibility, and more.

Our free SkyGrid Flight Control app provides this hyper-local weather data to help drone operators ensure they’re flying in optimal conditions based on the current temperature, cloud base, dew point, etc. This level of detail can also help avoid situations where rain or wind speeds unexpectedly increase during flight and damage the aircraft.

Drone weather

2. Evaluate roadway traffic

Unless flying in a remote location, it’s also important to add roadway traffic to your drone pre-flight checklist. This data can help operators avoid flying over congested areas that may pose a risk to vehicles and people on the ground.

Within SkyGrid Flight Control, the traffic layer can be turned on to see light vs. moderate vs. heavy traffic. High roadway traffic can be also be an indication of high pedestrian traffic. Operators can use this data to schedule their flights when the least amount of traffic is expected.

roadway traffic for drones

3. Assess the elevation

Checking the local elevation can also be beneficial for your drone pre-flight checklist. By identifying how elevation fluctuates in your area, operators can safely fly over varying terrain and maintain the desired altitude above ground level.

For example, you may need to fly under 100-feet altitude for missions that require high resolution imagery, such as a site inspection or search and rescue operation. Detailed elevation data can help you maintain this altitude as the ground level shifts throughout the flight.

The elevation layer in SkyGrid Flight Control shows the highest elevation points above ground level, which makes it easy to set optimal altitudes during the flight planning process.

drone elevation data

4. Check for local fires

Unfortunately, wildfires in the western region of the United States are becoming more frequent. This poses a couple different risks for drone operators. For starters, the heat and lack of visibility can lead to aircraft damage. But more importantly, your drone could interrupt the efforts of firefighters.

If a drone flies near a wildfire, fire response teams are often forced to ground their aircraft to avoid the potential of a midair collision. This could delay the airborne response to the fire and create a larger threat to people and property in the area. Unless involved in the firefighting operation, drone pilots should avoid flying near wildfires at all costs.

Drone operators can also check the local fire index to see what the wildfire risk is in their local area. The fire index layer in SkyGrid Flight Control app indicates the highest risk in red and the lowest risk in yellow. Operators should be extra cautious in areas with a high risk.

drone pre-flight checklist

5. Evaluate airspace classes & advisories

Hopefully this step is already part of your drone pre-flight checklist, but if not, it’s a critical one! Before taking flight, drone operators should check the airspace classes and altitude ceilings in their area. If flying in U.S. controlled airspace (Class A, B, C, D or E), flight authorization is required.

The airspace map in SkyGrid Flight Control identifies each airspace class and displays the pre-approved ceilings where LAANC is available for auto-approval. But no matter if you’re flying in controlled airspace or not, it’s always important to check for drone flight restrictions in your area. These FAA restrictions are often issued around military bases and high-security events. Operators who violate these flight restrictions may be subject to civil penalties and criminal charges.

SkyGrid Flight Control shows both part-time and full-time National Security UAS Flight Restrictions (NSUFRs). See example of UAS flight restrictions shown in red below.

drone pre-flight checklist restrictions
Detailed, up-to-date data is critical to minimize flight risks, especially when you consider how quicky conditions can change in low-altitude airspace. Our free SkyGrid Flight Control makes it easy to improve your situational awareness with advanced airspace, regulatory, and location data.

Download SkyGrid Flight Control today to start adding these steps to your drone pre-flight checklist.

Drone Automation Made Easy for Commercial Pilots

drone pipeline inspection

Drones are disrupting a wide variety of industries and innovating outdated business models. Just in the last few months, drones delivered test kits and disinfected outdoor surfaces to help fight COVID-19. They assessed hurricane damage and delivered aid to the most devastated areas. And they inspected pipelines to prevent leaks in the oil and gas industry.

But as an organization’s fleet grows, it’s not feasible to manually execute every flight that’s delivering a package, conducting an inspection, or responding to an emergency. Drone automation is critical to safely scale operations and enable more advanced missions.

At SkyGrid, we’re solving this challenge with a smarter drone solution that automates every phase of flight. Our free SkyGrid Flight Control app makes it easy to generate flight plans, get auto-approval to fly, and autonomously execute the mission.

Check out a quick overview of our drone automation capabilities and read on for more details.


How does SkyGrid automate drone operations?

In our last post about drone flight planning, we explored how SkyGrid Flight Control enables operators to automatically generate mission plans based on their flight parameters, such as the start and end time, altitude, speed, and distance between sweeps. Once the mission plan is finalized, our app also allows operators to autonomously launch their drone, perform the pre-defined flight plan, and get real-time insights.

More specifically, operators can take the follow actions during flight:

  • Autonomously execute single and multi-objective missions.
  • Monitor your drone’s real-time camera feed.
  • Leverage AI computer vision to automatically detect objects and act on the information in real-time.
  • View real-time mission progress as you execute a flight plan.
  • Pause and resume your mission.
  • Take photos and videos during flight.
  • View native control functions, like camera settings, speed, heading and more.

For example, first responders can monitor the live feed to identify a lost or missing person during a search and rescue operation. As the drone autonomously surveils the defined area, our AI computer vision will help detect the missing person in real-time, enabling first responders to quickly identify the coordinates and evaluate conditions for ground accessibility.

Operators also have the option to manually take control of the flight at any point in time during an automated mission. For example, during a perimeter surveillance mission, an operator may identify an object of interest in the live video feed and take control to inspect the object more closely.

The example below shows the live video feed during flight. With object detection turned on, pilots can automatically identify objects, such as vehicles, people, and animals, in real-time.

drone automation

What drone automation features are available for enterprises?

For enterprise customers, we can optimize flight planning and execution with artificial intelligence. Our AI algorithms can analyze crucial data, such as airspace traffic, weather forecasts, roadway traffic, and vehicle performance, to automatically generate optimal flight plans and autonomously adapt flights as conditions change. For extra safeguard measures, operators have the ability to approve the new flight plan before execution.

This approach can help solve the scalability issues enterprises are up against today. It removes the burden on drone operators to manually monitor weather changes, avoid buildings and infrastructure, navigate around roadway traffic, and comply with shifting regulatory dynamics. AI technology can more reliably analyze complex data layers to uncover hidden trends and adapt flights in the rapidly changing airspace.

Why use SkyGrid for drone automation?

Ultimately, we simplify drone operations with more automation in one end-to-end application. Rather than using several different apps to find up-to-date weather and environmental information, get LAANC approval, plan flights, and execute missions, SkyGrid Flight Control provides a complete solution to automate flight authorization, planning, and execution. We do the heavy lifting so operators can focus on overseeing the success of the mission.

We’re excited about the new features and functionality we have coming down the pipeline to further automate drone operations. Stay tuned for more updates!

Download SkyGrid Flight Control for free in the iPad App Store or learn more about our advanced enterprise features.

Automate Drone Flight Planning with SkyGrid Flight Control

No matter your mission, whether to inspect a pipeline, respond to an emergency, or secure a perimeter, the drone flight planning process shouldn’t be so complex. The burden typically falls on drone operators to manually plan and execute their flights, but it’s often a laborious, time-consuming process.

At SkyGrid, we’re simplifying this process with more automation and efficiency.

Our free SkyGrid Flight Control app provides a complete solution to check airspace, get LAANC, automate flights, and detect objects in real-time. We eliminate the manual workflows by automating drone flight planning and autonomously executing the mission.

Get the scoop from our product team and read on for more details.


What kind of missions can drone operators plan?

SkyGrid Flight Control automatically generates mission plans based on the drone operator’s flight parameters, such as start and end time, desired speed, altitude, and location. The different types of missions operators can choose from include:

Area Exploration Missions

Our area exploration capabilities enable drone operators to automatically generate sweep missions to surveil a defined area. Operators can specify the altitude they want to fly, the mission speed, and the distance between sweeps based on their objectives. For example, an operator conducting a search and rescue mission may opt for 30-foot sweeps to ensure no area is left unchecked, while an operator surveilling a construction site may select 100-foot sweeps to get a high-level view of construction progress.

drone sweep mission

Path Missions

Our path missions enable drone pilots to generate routes that follow a set of sequential waypoints. This approach could be useful for a wide variety of missions across public safety, inspections, security, and more. For example, operators can generate a path mission to inspect oil and gas pipelines, monitor swimmers along a beach shoreline, or surveil a perimeter around a high-security building.

During drone flight planning, operators can choose to have the drone auto-land at the end of the path or return home after the mission is complete.

drone waypoint mission

Multi-Objective Missions

Drone operators can also create more complex mission plans with multiple objectives. For example, in the event of a traffic incident, law enforcement agencies could generate a path mission to the incident and combine it with an area exploration mission to gather situational awareness before emergency teams arrive.

drone flight planning

Free Flight Missions

Our app also offers free flight capabilities, enabling operators to create flight boundaries where they can freely operate their drone. This could be beneficial for recreational drone pilots, as it allows pilots to get LAANC in controlled airspace without requiring a flight plan.

Free flight missions can also benefit commercial operators, especially when the area is less defined. For example, in response to a natural disaster, emergency responders can set up a free flight mission around a neighborhood to detect people, vehicles, or animals in destress with our AI computer vision. The free flight capabilities allow them to hone in on the most damaged areas within the neighborhood in real time.

drone flight boundaries

Object-Centric Missions

For enterprise customers, we also offer object-centric missions to automatically generate flight plans around vertical assets and structures, such as bridges, towers, and refineries. This capability can help simplify infrastructure and utility inspections. Based on the mission objectives, our AI computer vision models can also be trained to detect defects, recognize parts, and more.

Why use SkyGrid for drone flight planning?

Bottom line: we do the heavy lifting in the flight planning process. Based on your mission objectives, SkyGrid Flight Control will automatically generate a flight plan and autonomously execute the mission. Once a flight plan has been saved, operators can repeat the mission as often as needed. This simplifies routine inspections and surveillance missions that are conducted on a regular basis.

And with LAANC integrated directly in the drone flight planning process, we make compliance easy. We check all flight details to inform the operator if they’re eligible for auto-approval or if modifications are required to comply with LAANC. We also alert users of nearby stadiums, infrastructure, and other factors that may violate the Part 107 rules.

Download SkyGrid Flight Control for free in the iPad App Store or learn more about our advanced enterprise features.

LAANC Capabilities Simplify Flight Authorization & Compliance


Over the last three years, the FAA’s Low Altitude Authorization and Notification Capability (LAANC) has become an important tool to automate drone flight authorization in U.S. controlled airspace under 400 feet. LAANC authorization essentially eliminated the manual approval process that previously took up to three months.

As an FAA-approved UAS Service Supplier of LAANC, SkyGrid provides commercial (Part 107 Auto-Approval and Part 107 Further Coordination) and recreational (Section 44809) LAANC authorizations.

Check out a quick overview of our LAANC services and read on for more details:


What’s included in SkyGrid’s LAANC services?

Now available through our free SkyGrid Flight Control application, our LAANC services enable drone operators to:

  • Receive real-time LAANC authorizations for Part 107 commercial and recreational drone operations under 400 feet in U.S. controlled airspace.
  • Request further coordination to fly above the designated altitude ceiling in a UAS Facility Map, up to 400 feet. These requests can be submitted up to 90 days in advance, and the approval is coordinated manually through the FAA.
  • Access UAS Facility Maps that show pre-approved ceilings in controlled airspace and specify if further coordination is available. See example of the airspace ceilings below:

UAS facility maps

  • View airspace schedules to check specific times when LAANC authorization may or may not be required.
  • View Special Use Airspace data, airports and airspace classes, Temporary Flight Restrictions (TFRs) and Notices to Airmen (NOTAMs).
  • Check for both part-time and full-time National Security UAS Flight Restrictions (NSUFRs). See example of UAS flight restrictions shown in red below:

UAS flight restrictions

What’s new with LAANC?

The FAA just added 133 new areas of U.S. controlled airspace for LAANC authorization. That means drone operators can now use SkyGrid Flight Control to get automated flight approval at 537 air traffic facilities and 726 airports.

Through SkyGrid’s latest LAANC certification with the FAA, drone pilots can also get authorized in areas that span up to 10 nautical miles. LAANC authorization has also been enabled during civil twilight hours, provided the drone has anti-collision lighting visible for at least 3 statute miles. This provides more flying time that’s not strictly limited to daylight hours.

Why use SkyGrid’s LAANC services?

We provide more than just an airspace map and LAANC authorization. Our SkyGrid Flight Control app simplifies compliance by integrating LAANC directly into the flight planning workflow. That means drone operators can seamlessly plan their mission, ensure their flight meets all LAANC criteria, and get auto-approval to fly.

As you can see below, LAANC is not required for the mission plan on the left, and LAANC is required for the mission plan on the right and auto-approval is available.

LAANC authorization

Rather than planning a mission after LAANC authorization, this approach provides more assurances that all requirements are checked before you take flight.

Stay tuned for more updates as we continue to roll our new LAANC features and functionality!

Download SkyGrid Flight Control for free in the iPad App Store or learn more about our advanced enterprise features.

Your Go-To Airspace Map for Safe Drone Operations

drone weather

At SkyGrid, we recognize how important it is to access detailed, up-to-date airspace intelligence before taking flight. That’s why we’re providing the most robust airspace map to help drone operators ensure every mission is safe and successful.

Our free, SkyGrid Flight Control app provides a complete solution to check airspace, get LAANC, automate flights, and detect objects in real-time. At the center of this app is our airspace map with detailed airspace, regulatory, and location data.

Check out the quick overview from our team and read on for more details:


Airspace & Weather Intelligence

Our airspace intelligence includes advanced weather data, such as precipitation, temperature, wind speed and direction, cloud cover, visibility, and more.

The hyper-local weather data is updated every 60 seconds and detailed to the 500-meter radius, compared to traditional weather sources that can take up to 20 minutes to update and only provide a 2,000- to 4,000-meter radius. When you consider how quickly weather patterns can change, more detailed, near-real-time data becomes critical to minimize risks in the airspace, especially when flying smaller drones that are less resilient in harsh weather conditions.

As shown below, pilots can select a tile on our airspace map for an overview of the hyper-local weather details. Pilots can also check for drone air traffic from the SkyGrid system.

Drone airspace map with weather

Regulatory Data & Advisories

Our regulatory data includes airspace classes and advisories from the FAA, such as UAS flight restrictions. We also display the FAA’s UAS Facility Maps that show the pre-approved ceilings in controlled airspace where LAANC is available for auto-approval. This information allows a user to plan flights that can be approved in near near-time, rather than waiting for the plan to be manually reviewed.

For example, the area in purple shows Class C airspace where auto-approval is available up to the pre-approved altitude displayed in the grid, and the area in red indicates a National Security UAS Flight Restriction issued by the FAA.

airspace map with drone flight restrictions

Location Insights with Ground Intelligence

Our location insights include local buildings, obstacles, population density, elevation, and roadway traffic.

The elevation layer is mapped to 0.1-meter height increments, providing the vertical precision necessary to safely route drones over areas with varying elevations. The numbers displayed on our airspace map represent the highest ground elevation in each area to simplify the flight planning process.

drone airspace map with elevation data

Our airspace map also displays roadway traffic to help drone operators avoid flying over congested areas that may pose a risk to vehicles and people on the ground. As you’d expect, the green roads represent light traffic whereas the red roads represent heavy traffic. Operators can use this tool to understand what time of the day has the least amount of traffic and schedule their missions accordingly.

drone map with roadway traffic

Drone pilots also have the option to evaluate the airspace map with a satellite view or in 3D, making it easier to plan inspections and other object-centric flights. When reviewing their mission plan, different point of views also help drone pilots ensure there are no buildings or infrastructures too close to the flight path.

drone airspace map

For enterprises, SkyGrid also offers advanced data layers based on the unique needs of the mission. These data layers can include manned air traffic, foot traffic, radar-detected objects, and other data layers customized to the specific enterprise. To further simplify drone operations, enterprises can also leverage our AI technology to automatically plan, execute, and adapt flights as conditions change.

We know navigating low-altitude airspace is complex, but we aim to make it simple, safe, and secure.

Download SkyGrid Flight Control for free in the iPad App Store or learn more about our advanced enterprise features.